冷弯薄壁型钢墙体抗剪性能有限元分析*

刘 朋, 杜鹏飞

(沈阳工业大学 建筑与土木工程学院, 沈阳 110870)

摘 要: 为了研究薄钢板厚度、龙骨壁厚、波纹钢板类型和开洞等参数对冷弯薄壁型钢墙体抗剪性能的影响,利用有限元软件ABAQUS对组合墙进行了数值模拟.结果表明:增加墙面板厚度和选用波纹钢板墙面板能够显著增加其抗剪承载力;骨架厚度对墙体抗剪承载力影响较小;随着波纹钢板波长和波幅的减小,墙体承载力和初始刚度增大,屈服位移减小;波纹钢板覆面板的开洞尺寸对剪力墙性能影响较大;宽高比为1∶4和1∶2时,横向波纹钢板覆面剪力墙承载力高于纵向波纹钢板覆面剪力墙.

关 键 词: 冷弯薄壁型钢; 组合墙; 薄钢板; 静力加载; 波纹钢板; 有限元; 抗剪性能; 开洞

冷弯薄壁型钢墙体由C形和U形截面的冷弯薄壁型钢骨架和石膏板、OSB板、胶合板、钢板等墙面板,并通过自攻螺钉连接而成,形成了一个封闭的蒙皮结构[1].墙体为该结构体系的主要承重构件,承受重力荷载、风荷载以及水平地震作用引起的地震荷载.当墙板与钢骨架可靠连接时,墙面板在发挥围护作用的同时承担平面内的荷载,成为受力结构的一部分,参与整体结构体系共同工作,增加结构的刚度,提高墙体稳定性[2-5].国内外学者[6-7]进行了相关研究得出,钢框架对墙体承载力影响小,墙面板及螺钉间距对墙体承载力影响大,墙体尺寸对承载力影响小等.文献[8]提出了薄钢板覆面的墙体形式,试验研究了高宽比为2∶1至4∶1对墙体抗剪承载力的影响,基于大量墙体试验测试的结果,北美建筑规范AISI以表格形式提供抗剪强度设计值.一些研究人员对波纹钢板覆面的组合墙进行了试验研究,试验结果表明,相较于其他类型覆面墙体,波纹钢板覆面墙体具有更高的初始刚度和抗剪承载力,但延性较差.

1 组合墙体有限元模型

1.1 试件选取及材料特性

根据文献[9]数值计算结果和文献[8]试验结果,通过ABAQUS建立相同参数的组合墙体模型SWP-0,模型及材料参数如表1、2所示.墙架柱截面尺寸为C92.1 mm×41.3 mm×12.7 mm,导轨尺寸为U92.1 mm×41.3 mm;左右两端分别采用一根C形立柱连接固定;墙面板选用整块钢板,并与骨架采用自攻螺钉进行连接.

表1 模型参数
Tab.1 Model parameters mm

墙面板厚度墙体宽度墙体高度螺钉间距骨架壁厚0.7661024401001.09

表2 材料参数
Tab.2 Material parameters

材料厚度mm部位基材厚度mm屈服强度MPa极限强度MPa0.76墙面板0.762843731.09骨架1.14346496

1.2 有限元模型单元选取

所有部件均采用S4R壳单元,采用耦合模拟立柱导轨之间的连接;螺钉采用三个方向的非线性弹簧单元(Spring2)模拟墙面板与轻钢骨架的连接.根据试验现象和数据,螺钉在三个方向的荷载位移都各不相同,本文主要以加载方向(z轴)的滑移破坏为准则,连接强度的定义参考文献[2-4].

1.3 试验与数值计算结果对比

1.3.1 特征参数的确定

为了便于分析,对荷载变形关系曲线做特征化处理.弹性刚度Ke参照标准ECCS,取0.4倍峰值荷载Pm处割线刚度;屈服点参照《建筑抗震试验规程》(JGJ/T101-2015)确定.

1.3.2 结果对比分析

计算结果如图1所示.从图1中可以看出,Niari的数值模拟和SWP-0数值模拟在加载初期曲线呈线性分布,组合墙体基本处于弹性阶段.继续加载至曲线出现明显的拐点时,说明墙面板底部螺钉已达到极限强度(非线性弹簧单元).从单位抗剪承载力的对比来看,SWP-0与试验一和试验二的误差约在6%,虽然取得最大荷载时对应的位移不同,但承载力基本吻合.

图1 试验与数值模拟的组合墙荷载-位移曲线
Fig.1 Loading-displacement curves of composite walls by experimental measuring and numerical modeling

2 墙体有限元模型参数分析

进行有限元计算模型参数分析时,所有骨架构件钢材选用Q345,SWP-1~SWP-6包括SWP-1(C)和SWP-6(T)的墙面板材料选用Q345,SWP-7~SWP-17的墙面板材料选用Q235;组合墙C型立柱和U型导轨的截面尺寸均为C152.4 mm×41.15 mm×12.7 mm和U152.4 mm×41.15 mm,具体模型参数如表3所示.

2.1 薄钢板厚度对组合墙抗剪性能的影响

0.84、1.00和1.2 mm厚平面薄钢板覆面组合墙有限元计算结果,如图2、3和表4所示.随着墙面板厚度增大,1.00和1.20 mm厚平面薄钢板覆面组合墙的单位抗剪承载力分别比0.84 mm厚墙面板提高了48.58%和141.34%,初始刚度分别提高了61.31%和136.68%,可见平面薄钢板厚度对组合墙承载力和初始刚度有显著影响,此影响因素也包括了随着薄钢板厚度增加而增加的连接强度的影响;立柱翼缘截面为弧形的SWP-1(C),初始刚度和抗剪承载力无明显变化.

表3 有限元模型参数
Tab.3 Parameters for finite element model

墙体模型编号墙面板材料墙面板材料厚度mm边立柱厚度mm副立柱厚度mm宽高比螺钉间距mmSWP-1平面薄钢板1.001.201.201∶2150/300SWP-1(C)平面薄钢板1.001.201.201∶2150/300SWP-2平面薄钢板0.841.201.201∶2150/300SWP-3平面薄钢板1.201.201.201∶2150/300SWP-4平面薄钢板1.001.201.001∶2150/300SWP-5平面薄钢板1.001.001.201∶2150/300SWP-6WA-825(横向)0.841.201.201∶2150/300SWP-6(T)WA-825(横向)0.541.201.201∶2150/300SWP-7WA-825(横向)0.761.09-1∶4150SWP-8WA-825(纵向)0.761.09-1∶4150SWP-9WA-825(横向)0.761.091.091∶2150/300SWP-10WA-825(纵向)0.761.091.091∶2150/300SWP-11AC-780(横向)0.761.091.091∶2150/300SWP-12MINO-900(横向)0.761.091.091∶2150/300SWP-13MINO-900(横向、边长700方洞)0.761.091.091∶2150/300SWP-14MINO-900(横向、边长400方洞)0.761.091.091∶2150/300SWP-15MINO-900(横向、半径395圆洞)0.761.091.091∶2150/300SWP-16MINO-900(横向、半径350圆洞)0.761.091.091∶2150/300SWP-17MINO-900(横向、半径225.7圆洞)0.761.091.091∶2150/300

图2 墙面板应力云图(1)
Fig.2 Stress nephogram of wall panels (1)

2.2 立柱厚度对组合墙抗剪性能的影响

立柱厚度和截面对组合墙抗剪性能的影响,如图4和表5所示.相比SWP-1,SWP-4和SWP-5单位抗剪承载力分别下降12.42%和6.78%,SWP-4初始刚度下降14.64%,而SWP-5提高1.56%,由此说明,立柱厚度对组合墙抗剪承载力和初始刚度无明显影响.

图3 组合墙荷载位移对比图(1)
Fig.3 Load-displacement comparison of composite walls (1)

表4 模拟值数据对比(1)
Tab.4 Comparison of simulated data (1)

模型编号初始刚度(kN·mm-1)FykNδymm单位抗剪承载力(N·mm-1)SWP-13.2111.217.9213.12SWP-1(C)3.4510.947.3812.82SWP-21.997.259.208.83SWP-34.7119.398.7521.31

注:Fy为屈服承载力;δy为屈服承载力对应位移.

图4 组合墙荷载位移对比图(2)
Fig.4 Load-displacement comparison of composite walls (2)

表5 模拟值数据对比(2)
Tab.5 Comparison of simulated data (2)

模型编号初始刚度(kN·mm-1)FykNδymm单位抗剪承载力(N·mm-1)SWP-13.2111.217.9213.12SWP-42.749.988.1711.49SWP-53.2610.567.4512.23

2.3 墙面板几何形式对组合墙抗剪性能的影响

波纹钢板因其几何外形,提供了一定的刚度,使得覆面波纹钢板不易屈曲,可有效提高构件的屈曲性能,使墙体承担较大的轴压力、弯矩或剪力而不屈曲.

2.3.1 波纹板与平面薄钢板组合墙抗剪性能比较

平面薄钢板覆面组合墙与波纹钢板覆面组合墙对比计算结果如图5、6和表6所示.相较于SWP-2,比其覆面钢板等厚度的SWP-6的单位抗剪承载力提高了46.89%,初始刚度下降27.64%,而与SWP-2承载力相当的SWP-6(T)的覆面钢板厚度只有SWP-2覆面钢板厚度的64.29%,但初始刚度大幅下降.

2.3.2 布置方向和高宽比对组合墙抗剪性能影响

计算结果如图7、8和表7所示.高宽比为4∶1时,SWP-7比SWP-8承载力提高了26.45%,初始刚度提高85.71%;高宽比为2∶1时,SWP-9比SWP-10承载力提高了17.82%,初始刚度提高了46.10%.在两种高宽比下,横向波纹覆面组合墙承载力和初始刚度均高于纵向波纹覆面组合墙.

图5 墙面板应力云图(2)
Fig.5 Stress nephogram of wall panels (2)

图6 组合墙荷载位移对比图(3)
Fig.6 Load-displacement comparison of composite walls (3)

表6 模拟值数据对比(3)
Tab.6 Comparison of simulated data (3)

模型编号初始刚度(kN·mm-1)FykNδymm单位抗剪承载力(N·mm-1)SWP-21.997.259.208.83SWP-61.4412.8414.6512.97SWP-6(T)0.619.0823.448.89

随着高宽比的减小,初始刚度逐渐增大,SWP-9比SWP-7高184.62%,SWP-10比SWP-8高261.90%,而单位抗剪承载力却下降,SWP-9比SWP-7下降29.38%,SWP-10比SWP-8下降24.20%,随着高宽比的减小,组合墙初始刚度大幅提高,单位抗剪承载力略有下降.

图7 墙面板应力云图(3)
Fig.7 Stress nephogram of wall panels (3)

图8 组合墙荷载位移对比图(4)
Fig.8 Load-displacement comparison of composite walls (4)

表7 模拟值数据对比(4)
Tab.7 Comparison of simulated data (4)

模型编号初始刚度(kN·mm-1)FykNδymm单位抗剪承载力(N·mm-1)SWP-70.396.7327.8613.48SWP-80.215.3744.2010.66SWP-91.1110.0413.279.52SWP-100.768.0017.748.08

2.3.3 不同类型波纹板对组合墙抗剪性能影响

不同类型波纹板覆面组合墙计算结果如图9和表8所示.相较于WA-825波纹板覆面组合墙,MINO-900波纹板覆面组合墙的单位抗剪承载力和初始刚度分别提高约60%和200%,AC-780波纹板覆面组合墙的单位抗剪承载力和初始刚度分别下降35%和80%.随着波长和波幅的减小,组合墙承载力、初始刚度增大,屈服位移减小.

图9 组合墙荷载位移对比图(5)
Fig.9 Load-displacement comparison of composite walls (5)

表8 模拟值数据对比(5)
Tab.8 Comparison of simulated data (5)

模型编号初始刚度(kN·mm-1)FykNδymm单位抗剪承载力(N·mm-1)SWP-110.216.3947.986.14SWP-123.3613.388.3715.21

2.3.4 波纹板开洞对组合墙抗剪性能影响

波纹钢板覆面组合墙提高了平面内稳定性,但过大的刚度延性较差,抗震耗能较低.本文有限元分析中墙面板洞口均位于墙体形心,其中,SWP-15圆洞的面积等于SWP-13方洞的面积,SWP-16圆洞的直径等于SWP-13方洞的边长,SWP-17圆洞的面积等于SWP-14方洞的面积.

计算结果如图10~12和表9所示.随着方洞尺寸的增大,初始刚度和单位抗剪承载力的下降幅度增大,相较于SWP-12,SWP-13初始刚度降低了约80%,但组合墙的单位抗剪承载力同时下降了约45%,下降幅度较大;相较于SWP-12,SWP-14初始刚度降低约35%,单位抗剪承载力降低12%.

图10 墙面板应力云图(4)
Fig.10 Stress nephogram of wall panels (4)

相比SWP-13,SWP-15(圆洞面积等于SWP-13)单位抗剪承载力提高约8%,两者初始刚度相当,SWP-16圆洞的面积小于SWP-15,且直径等于SWP-13方洞边长,其初始刚度提高约60%,单位抗剪承载力提高约20%;相较SWP-14,SWP-17(圆洞面积等于SWP-14)初始刚度下降10%,两者承载力相当.方洞与圆洞对组合墙抗剪性能的影响无明显差异,而洞口面积对组合墙抗剪性能影响显著.

图11 组合墙荷载位移对比图(6)
Fig.11 Load-displacement comparison of composite walls (6)

图12 不同方洞尺寸的特征参数对比
Fig.12 Comparison of characteristic paramaters of square hole with different sizes

表9 模拟值数据对比(6)
Tab.9 Comparison of simulated data (6)

模型编号初始刚度(kN·mm-1)FykNδymm单位抗剪承载力(N·mm-1)SWP-123.3613.388.3715.21SWP-130.597.3426.428.43SWP-142.2111.1913.6713.37SWP-150.608.5728.739.05SWP-160.968.9722.8210.10SWP-171.9611.6513.5413.25

3 结 论

本文采用ABAQUS对冷弯薄壁型钢组合墙进行了参数分析,得到的结论如下:

1) 平面薄钢板墙体承载力和初始刚度随着板厚增大而显著提高,立柱壁厚及弧形翼缘截面边立柱对组合墙抗剪性能无明显影响.

2) 相同厚度下(0.84 mm),WA-825波纹板组合墙单位抗剪承载力比平面薄钢板组合墙高约45%,初始刚度无明显变化,承载力相当时,波纹板厚约为平面薄钢板的65%;横向波纹板组合墙承载力和初始刚度均高于纵向波纹板组合墙,且随着高宽比从4∶1(2 440 mm×610 mm)下降至2∶1(2 440 mm×1 220 mm)时,单位抗剪承载力略有下降,而初始刚度大幅提高.

3) 通过MINO-900波纹板组合墙的研究和分析,圆洞和方洞对组合墙抗剪性能的影响无明显差异,而开洞面积对其影响显著.

参考文献

[1]黄智光.低层冷弯薄壁型钢房屋抗震性能研究 [D].西安:西安建筑科技大学,2011.

(HUANG Zhi-guang.Seismic behaviors study on low-rise cold-formed thin-wall steel residential buildings [D].Xi’an:Xi’an University of Architecture and Technology,2011.)

[2]李元齐,马荣奎,何慧文.冷弯薄壁型钢与覆面钢板自攻螺钉连接性能试验研究 [J].建筑钢结构进展,2017,19(6):60-64.

(LI Yuan-qi,MA Rong-kui,HE hui-wen.Experimental study on behavior of screw connections for cold-formed thin-walled steel studs and steel sheathings [J].Progress in Steel Building Structures,2017,19(6):60-64.)

[3]石宇,王身伟,刘永健,等.冷弯薄壁型钢单颗自攻螺钉抗剪连接性能研究 [J].建筑科学与工程学报,2014,31(2):57-64.

(SHI Yu,WANG Shen-wei,LIU Yong-jian,et al.Research on shear behavior of single tapping screw connection in cold-formed thin-wall steel structures [J].Journal of Architecture and Civil Engineering,2014,31(2):57-64.)

[4]李元齐,马荣奎,宋延勇,等.冷弯薄壁型钢螺钉连接抗剪性能试验研究 [J].同济大学学报,2013,41(1):11-19.

(LI Yuan-qi,MA Rong-kui,SONG Yan-yong,et al.Experimental study on shear behavior of screw con-nections for cold-formed thin-walled steel structures [J].Journal of Tongji University,2013,41(1):11-19.)

[5]刘朋,徐敬文,宁宝宽,等.OSB板纹理对连接性能的影响 [J].沈阳工业大学学报,2017,39(3):357-360.

(LIU Peng,XU Jing-wen,NING Bao-kuan,et al.In-fluence of OSB texture on connection performance [J].Journal of Shenyang University of Technology,2017,39(3):357-360.)

[6]Tian Y S,Wang J,Lu T J.Racking strength and stiffness of cold-formed steel wall frames [J].Journal of Construction Steel Research,2004,60(7):1069-1093.

[7]Serrette R L,Lam I,Qi H.Cold-formed steel frame shear walls utilizing structural adhesives [J].Journal of Structural Engineering,2006,132(4):591-599.

[8]Balh N.Development of seismic design provisions for steel sheathed shear walls[R].Montreal:McGill University,2011.

[9]Niari S E,Rafezy B,Abedi K.Numerical modeling and finite element analysis of steel sheathed cold-formed steel shear walls [J].Steel and Composite Structures,2016,22(1):79-89.

Finite element analysis of shear performance of cold-formed thin-walled steel walls

LIU Peng, DU Peng-fei

(School of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China)

Abstract In order to study the effect of parameters, e.g. thickness of thin steel plate, thickness of frames and type and holing of corrugated steel plate, on the shearing performance of cold-formed thin-walled steel walls, composite walls were simulated with finite element software ABAQUS. The results show that by increasing the thickness of wall panels and using corrugated steel panels, the anti-shear capacity of walls can be significantly improved and the thickness of frames has little effect on the anti-shear capacity of walls. With decreasing wave length and amplitude of corrugated steel plate, the bearing capacity and the initial stiffness of walls increase, while the yield displacement decreases. The holing size of plate sheathed with corrugated steel plate has significant influence on the performance of shearing walls. When aspect ratios were 1∶4 and 1∶2, the bearing capacity of shearing walls sheathed transversely with corrugated steel plates are higher than those sheathed longitudinally.

Key words cold-formed thin-walled steel; composite wall; thin steel plate; static loading; corrugated steel plate; finite element; anti-shear capacity; holing

收稿日期 2017-11-24.

基金项目 辽宁省博士启动基金资助项目(201601158); 辽宁省教育厅一般项目(201764148).

作者简介 刘 朋(1983-),男,辽宁盘锦人,讲师,博士,主要从事轻钢结构等方面的研究.

*本文已于2019-06-28 16∶17在中国知网优先数字出版. 网络出版地址: http:∥kns.cnki.net/kcms/detail/21.1189.T.20190628.1146.002.html

doi:10.7688/j.issn.1000-1646.2019.04.21

中图分类号: TU 398.6

文献标志码:A

文章编号:1000-1646(2019)04-0474-07

(责任编辑:钟 媛 英文审校:尹淑英)