二次受力下粘贴钢板加固RC梁抗弯性能分析*

宋 力, 李林果, 樊 成

(大连大学 材料破坏力学数值试验中心, 辽宁 大连 116622)

摘 要: 为了研究二次受力下粘贴钢板加固RC梁的抗弯性能影响因素,利用数值模拟软件ABAQUS建立了钢板加固RC梁受压模型,分析了钢板厚度、配筋率和预载量等因素对钢板加固RC梁抗弯承载力的影响,对试验数据进行分析处理.结果表明:二次受力下钢板加固RC梁抗弯承载力随初始应力增大而减小;钢板厚度、长度、配筋率和预载量因素中,初始荷载和钢板厚度对二次受力下RC梁抗弯性能的影响较为显著;钢板加固RC梁存在最佳配板率,试验结果与有限元模拟吻合度较好.

关 键 词: 二次受力; 钢板加固钢筋混凝土梁; 抗弯性能; 钢板长度; 钢板厚度; 配筋率; 预载量; 有限元模拟

粘贴钢板加固钢筋混凝土桥梁(RC构件)主要目的是提高构件抗弯承载力,同时改善构件刚度,二者可以形成共同受力的整体,改善原RC构件应力状态,达到补强效果,在实际工程加固已得到广泛的应用和发展[1-3].

目前,国内外学者对钢板加固RC梁已有很多研究.郭文龙等[4]发现加固梁中性轴高度和抗弯刚度随荷载增加均呈非线性变化,且实际计算模型应考虑桥梁损伤的现实状态;张维真[5]对锈蚀RC梁进行加固,发现梁承载力提高明显,但屈服挠度变化不明显;Alam等[6]发现用钢板和粘接剂修复严重剪切损坏的钢板钢筋,可以完全恢复梁的原始剪切能力.

但大多数研究人员只停留在考虑一次受力状态,而忽略桥梁二次受力的影响.一般情况下,RC构件加固是在初始荷载存在时,构件加固前处于一次受力或不完全卸荷状态.为更加贴近实际RC构件加固工程,本文针对二次受力下钢板加固钢筋混凝土梁进行抗弯性能研究.采用数值模拟软件ABAQUS对二次受力下钢板加固RC梁进行模拟,并将得出的模拟数据与试验结果进行对比,分析钢板层数、配筋率和预载量等因素对钢板加固RC梁效果的影响,评估其可靠度和实用性,为修复实际RC桥梁加固工程提供理论基础.

1 试验与有限元分析

1.1 试 验

RC梁为适筋梁,梁长为1 700 mm,截面尺寸为b×h=120 mm×200 mm,纵向受拉、压钢筋分别为HRB400的2φ8、2φ12,配筋率为0.59%,混凝土保护层厚度为30 mm,箍筋型号为HPB300,箍筋配置为φ6@150 mm,混凝土强度等级为C30.单层钢板厚度为2 mm,宽度为120 mm,弹性模量为192 GPa,屈服强度为300 GPa,极限抗拉强度为610 GPa.图1为RC梁试验加载装置,采用三分点加载方式,RC梁试验加载方案如表1所示.

图1 RC梁试验加载装置
Fig.1 Loading device for RC beam test

1.2 有限元模型建立

采用ABAQUS软件对表1中各梁进行模拟,梁和钢板采用分离式模型[7-8],假定钢板、钢筋为理想线弹性和理想弹塑性材料,不考虑二者与混凝土之间的粘结滑移.混凝土采用C3D8R单元,钢筋采用T3D2单元,钢板采用S4R单元.混凝土结构受拉、压本构模型采用文献[9-12]中提供的关系.图2~3分别为RC单轴应力应变曲线、钢材和环氧树脂胶应力应变关系曲线,相关参数含义参见文献[9-12].钢筋embedded region嵌入混凝土,钢板取tie约束至混凝土.梁支座及加载点处均设置钢垫块,支座处钢垫块底部中线处添加铰接约束,分别约束5个方向自由度和4个方向自由度.

表1 RC梁试验加载方案
Tab.1 Loading schemes for RC beam test

梁试件编号加载方式钢板厚度mmML-1无,对比梁0ML-2无,直接加固2ML-3无,直接加固4ML-4加载至20%PML-1时持续加载2ML-5加载至50%PML-1时持续加载2ML-6加载至70%PML-1时持续加载2ML-7加载至90%PML-1时持续加载2

注:PML-1为对比梁ML-1实测极限荷载,加固梁粘贴钢板后加载至破坏.

图2 RC单轴拉、压应力应变曲线
Fig.2 Stress-strain curve of RC under uniaxial tension and compression tests

根据上述条件建立有限元模型,如图4a所示.根据文献[13],混凝土梁网格划分为30 mm,且种子按边布种.网格划分以及种子布置结果如图4b所示.

图3 钢材和环氧树脂胶应力应变曲线
Fig.3 Stress-strain curve of steel and epoxy adhesives

图4 梁模型有限元建立和网格划分、种子布置
Fig.4 Finite element establishment,meshing and seed placement of beam model

2 有限元结果与试验结果对比

将模拟得到的各个梁荷载位移曲线与相应试验结果进行对比分析,结果如图5所示.试验梁开裂荷载、屈服荷载、极限荷载、跨中挠度结果对比如表2所示.

由图5和表2可知,梁在各种模型下的荷载位移曲线与试验结果基本吻合.证明所建立的RC梁加固模型符合要求.有限元结果与试验结果误差均在8%以内,表明所建立的有限元模型是正确可靠的.

表2 有限元结果与试验结果对比
Tab.2 Comparison between finite element simulation and test results

梁试验编号开裂荷载/kN试验有限元屈服荷载/kN试验有限元极限荷载/kN试验有限元跨中挠度/mm试验有限元ML-120.5222.5255.3454.6478.7679.038.507.84ML-225.4525.4380.9378.45107.50110.249.8012.87ML-328.3130.9685.8186.62120.30124.0915.5016.30ML-420.2021.8456.4555.8483.7384.4011.7012.04ML-524.4223.9657.0456.7690.3291.8321.8622.31ML-623.1224.7853.1354.9287.3488.3419.3717.91ML-721.0421.5051.3150.7885.5183.1416.4615.64

3 加固效果影响因素分析

3.1 钢板厚度因素

选取N、O两组数据结合对比梁ML-1进行分析,比较方案如表3所示,有限元模拟结果如图6所示,图7为钢板厚度对梁极限承载力影响柱状图.由图6、7可知:1)无论RC梁是否有加载历程,RC梁极限抗弯承载力都随着钢板厚度的增加而提高;2)当加载历程相同时,钢板厚度对RC梁极限抗弯承载力影响较为明显,且随钢板厚度增加而增大;3)对比NL-4和OL-4发现,无加载历程时,钢板厚度对RC梁的抗弯承载力提高更为明显(NL-1,2,3和OL-1,2,3结论相同);4)无加载历程时,NL-4和NL-3相对于NL-2和NL-1对提高RC梁的抗弯承载力更大.

3.2 钢板长度因素

表4为钢板长度比较方案.图8为模拟结果.由图8可知,钢板长度为1 300 mm时对RC梁极限荷载提高幅度减弱或不是很明显;钢板长度对挠度影响很小.

图5 有限元结果与试验结果荷载位移曲线对比
Fig.5 Comparison of load-displacement curves between finite element simulation and test results

表3 不同钢板厚度方案比较
Fig.3 Scheme comparison with various steel plate thickness

梁试件编号加载历程钢板厚度/mmML-1无,对比梁0NL-1无,直接加固2NL-2无,直接加固4NL-3无,直接加固6NL-4无,直接加固8梁试件编号加载历程钢板厚度/mmOL-1加载至60%PML-1时持续加载2OL-2加载至60%PML-1时持续加载4OL-3加载至60%PML-时持续加载6OL-4加载至60%PML-1时持续加载8

图6 钢板厚度和预载量对加固梁荷载位移曲线的影响
Fig.6 Effect of steel plate thickness and preload amount on load-displacement curves of reinforced beams

图7 加固厚度与梁极限抗弯承载力关系
Fig.7 Relationship between reinforcement thickness and ultimate bending capacity of beams

表4 钢板长度比较方案
Tab.4 Scheme comparison for various steel plate lengths

mm

梁试件编号板长钢板厚度PL-17002PL-29002PL-311002PL-413002PL-515002

图8 不同钢板长度效果
Fig.8 Influence of various steel plate lengths

3.3 配筋率因素

表5为不同配筋率比较方案.图9为有限元结果.由图9可知:1)相同配筋率下,加固梁TL-3(TL-2和TL-1)相对于未加固梁SL-3(SL-2和SL-1)其极限荷载承载力提高45.30%(41.36%和37.94%);2)钢板厚度相同情况下,RC梁抗弯承载力随配筋率增加而增大,但不明显;3)RC梁最大挠度值减小程度TL组大于SL组,即RC梁更快达到其抗弯承载力.

表5 不同配筋率对比方案
Tab.5 Scheme comparison for different reinforcement ratios

梁试件编号加载历程配筋率钢板厚度mmSL-1无,对比梁2ϕ6,2ϕ8(0.65%)0SL-2无,对比梁2ϕ8,2ϕ10(1.07%)0ST-3无,对比梁2ϕ10,2ϕ12(1.60%)0TL-1无,直接加载2ϕ6,2ϕ8(0.65%)4TL-2无,直接加载2ϕ8,2ϕ10(1.07%)4TL-3无,直接加载2ϕ10,2ϕ12(1.60%)4

图9 不同配筋率影响结果
Fig.9 Influence of different reinforcement ratios

4 结 论

本文通过分析得出以下结论:

1) 当二次受力下RC梁配筋率较高时,使用钢板加固RC梁其极限承载力提高明显,即加固效果更好;相对于对比梁而言,增加配筋率对RC梁极限抗弯承载力影响较大.

2) 对二次受力下钢板RC梁加固时,梁抗弯承载力随钢板厚度增加而增大;当预载程度为60%且钢板厚度为6和8 mm时,其抗弯承载力增加很明显,分别为23.00%、25.80%,且钢板长度对挠度影响不大.

3) 存在最佳配板率,使得二次受力下钢板加固RC梁极限承载力提高不再明显或基本不提高.本文中钢板长度为1 300 mm时最好,占总长的86.70%,故实际工程应考虑合理的加固方案以节省钢板原材料.

参考文献(References):

[1]周良肖.关于粘贴钢板法在琅口桥加固工程中的应用 [J].低碳世界,2018(7):288-289.

(ZHOU Liang-xiao.Application of paste plate method in the reinforcement project of Langkou Bridge [J].Low-carbon World,2018(7):288-289.)

[2]王秀丽.粘钢加固法在隧道衬砌裂损快速修补中的应用研究 [J].施工技术,2018,47(10):61-65.

(WANG Xiu-li.Research of bonded steel strengthening method in quick repair of tunnel lining cracking [J].Construction Technology,2018,47(10):61-65.)

[3]柯美智.粘钢和碳纤维布技术在闸墩补强加固中的应用 [J].水利水电技术,2014,45(12):25-29.

(KE Mei-zhi.Application of steel-bonded and carbon fiber cloth technology to reinforcement of gate pier [J].Water Resources and Hydropower Engineering,2014,45(12):25-29.)

[4]郭文龙,韩之江,刘志华,等.PC梁加固前后使用性态差异性试验研究 [J].铁道学报,2017,39(11):116-123.

(GUO Wen-long,HAN Zhi-jiang,LIU Zhi-hua,et al.Experimental study on performance and status diffe-rence of PC beams before and after reinforcement [J].Journal of the China Railway Society,2017,39(11):116-123.)

[5]张维真.基于ABAQUS的粘贴钢板法加固钢筋混凝土梁力学性能分析 [J].吉林建筑大学学报,2017,34(5):17-20.

(ZHANG Wei-zhen.Fea analysis of mechanical performance of RC beams strengthened with bonded steel plate based on ABAQUS software [J].Journal of Jilin Jianzhu University,2017,34(5):17-20.)

[6]Alam M A,Jabbar A S A,Jumaat M Z,et al.Effective method of repairing RC beam using externally bonded steel plate [J].Applied Mechanics and Materials,2014,567:399-404.

[7]杜青,蔡美峰,李晓会.粘贴钢板加固钢筋混凝土梁的分离式有限元模型 [J].工程力学,2007,24(3):154-158.

(DU Qing,CAI Mei-feng,LI Xiao-hui,et al.Separate finite element modeling of reinforced concrete beams bonded with steel plates [J].Engineering Mechanics,2007,24(3):154-158.)

[8]杜青,蔡美峰,张献民.CFRP板加固钢筋混凝土梁的分离式有限元模型 [J].土木工程学报,2005,38(7):11-14.

(DU Qing,CAI Mei-feng,ZHANG Xian-min.Separate finite element modeling of RC beams with exter-nally bonded CFRP plates [J].China Civil Engineering Journal,2005,38(7):11-14.)

[9]王强,常凯,侯康康,等.用于ABAQUS梁单元的混凝土单轴本构模型 [J].建筑科学与工程学报,2018,35(5):194-202.

(WANG Qiang,CHANG Kai,HOU Kang-kang,et al.Uniaxial concrete constitutive model for ABAQUS beam element [J].Journal of Architecture and Civil Engineering,2018,35(5):194-202.)

[10]杨璐,石旭武.钢筋混凝土梁塑性损伤模型的数值模拟 [J].沈阳工业大学学报,2016,38(1):97-101.

(YANG Lu,SHI Xu-wu.Numerical simulation of plastic damage model for reinforced concrete beam [J].Journal of Shenyang University of Technology,2016,38(1):97-101.)

[11]秦浩,赵宪忠.ABAQUS混凝土损伤因子取值方法研究 [J].结构工程师,2013,29(6):27-32.

(QIN Hao,ZHAO Xian-zhong.Study on the ABAQUS damage parameter in the concrete damage plasticity model [J].Structural Engineers,2013,29(6):27-32.)

[12]舒兴旺,张影.环氧树脂/橡胶混凝土的应力应变曲线试验 [J].武汉理工大学学报(交通科学与工程版),2016,40(1):110-113.

(SHU Xing-wang,ZHANG Ying.Experiment on stress-strain curve of epoxy-rubber concrete [J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2016,40(1):110-113.)

[13]宋力,王文源,樊成.BFRP布加固RC梁抗弯性能研究 [J].四川建筑科学研究,2018,44(3):1-5.

(SONG Li,WANG Wen-yuan,FAN Cheng.Study on bending resistance properties of RC beams streng-thened with BFRP [J].Sichuan Building Science,2018,44(3):1-5.)

Analysis on bending resistance of RC beams reinforced with steel bonding plates under secondary stress

SONG Li, LI Lin-guo, FAN Cheng

(Research Center for Numerical Tests on Material Failure, Dalian University, Dalian 116622, China)

Abstract In order to study the influencing factors of bending resistance of RC beams reinforced with steel plates under secondary stress, the ABAQUS numerical value was used to establish the compression model for the RC beam reinforced with steel plates, and the effect of such factors as steel plate thickness, reinforcement ratio and preload amount on the bending capacity of RC beams reinforced with steel plates was analyzed. In addition, the test data were analyzed and processed. The results show that the bending capacity of RC beams reinforced with steel plates decreases with the increasing initial stress under secondary stress. Among the factors of steel plate thickness, steel plate length, reinforcement ratio and preload amount, the initial load and steel plate thickness have more significant influence on the bending resistance of RC beams reinforced with steel plates under secondary stress. The RC beams reinforced with steel plates have the optimal plate matching ratio, and the test results agree well with those of finite element simulation.

Key words secondary stress; concrete beam reinforced with steel plate; bending resistance; steel plate length; steel plate thickness; reinforcement ratio; preload amount; finite element simulation

收稿日期 2018-09-02.

基金项目 辽宁省自然科学基金项目(2015020222).

作者简介 宋 力(1959-),男,辽宁盖县人,教授,博士,主要从事材料损伤等方面的研究.

*本文已于2019-11-21 10∶34在中国知网优先数字出版. 网络出版地址: http:∥kns.cnki.net/kcms/detail/21.1189.T.20210713.1314.004.html

doi:10.7688/j.issn.1000-1646.2021.04.19

中图分类号: TU 375

文献标志码: A

文章编号: 1000-1646(2021)04-0470-06

(责任编辑:钟 媛 英文审校:尹淑英)